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This study proposes a new scheme for the sampled-data representation of nonlinear systems 

with time-delayed multi-input. The proposed scheme is based on the Taylor-series expansion 

and zero-order hold assumption. The mathematical structure of a new discretization scheme 

is explored. On the basis of this structure, the sampled-data representation of nonlinear sys- 

tems including time-delay is derived. The new scheme is applied to nonlinear systems with two 

inputs and then the delayed multi-input general equation is derived. The resulting time- 

discretization provides a finite-dimensional representation of nonlinear control systems with 

time-delay enabling existing controller design techniques to be applied to them. In order to 

evaluate the tracking performance of the proposed scheme, an algorithm is tested for some of the 

examples including maneuvering of an automobile and a 2-DOF mechanical system. 
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1. Introduction 

Resolving time-delay in control systems will 

become increasingly important in the near future 

as Internet technology further develops and 

evolves. There are two reasons why time-delay is 

received special attention in the field of control 

systems. First, time-delay is increasing due to the 

communication needs and complex computations 

involved in control systems. Digital controllers 

using communications and having increased com- 
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putational requirements induce such a time-de- 

lay. In embedded control systems, the effects of 

this time-delay cannot be ignored due to the com- 

munication and increased computation. Second, 

control systems with time-delay exhibit complex 

behavior due to infinite dimensionality, even in 

the case of linear system with a constant time- 

delay in the input or states has infinite dimen- 

sionality when expressed in the continuous time 

domain. Therefore, the controller design tech- 

nique developed in the finite-dimensional systems 

during the last few decades cannot be applied to 
systems having any time-delay in the variables. 

Thus, it is necessary to develop a control system 

design method that resolves this time-delay. 

The engineering literature dealing with time- 

delayed system and a discretization is very ex- 

tensive. Most of this literature deals with linear 

time-delay control systems and, in particular, 
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with the stability and robustness related to time- 

delay. In Choi et al. (1999), the authors proposed 

a new control scheme applicable to systems with 

time-delay, which is based on the conventional 

position-position feedback-type controller. The 

stability of this control system has been proved 

using scattering theory and compared to the con- 

ventional ones. Jeong and Lee (1995) proposed a 

method of designing a robust time-delayed teleo- 

perator robot system based on optimization. The 

proposed teleoperator control system deals with 

the robustness of teleoperation, especially, during 

the contact phase. 

Time Delay Control (TDC) utilizing the esti- 

mated uncertainties of general nonlinear systems 

using the time-delay method is actively studied. 

Choi and Baek (2002) studied magnetic levita- 

tion systems required to have a large operating 

range in many applications. TDC was applied to 

a single-axis magnetic levitation system and a 

reduced-order observer was utilized to estimate 

states excluding measurable states in the control 

law. Lee and Chang (1999) studied the input/  

output linearization (IOL) method using TDC 

and a time-delay observer. This method enables 

the IOL method to be applied to plants even 

when not all of the states of the plant are mea- 

surable or the measured plant output is very 

noisy. In the study by Byeon and Song (1997), a 

position control system was developed for the 

throttle actuator system that uses one throttle 

actuation to obtain low volume and a DC servo 

motor for fast response. In order to drive the DC 

motor, the PWM signal generator and PWM am- 

plifier were built and interfaced to the motor and 

controller. Also, the time-delay control (TDC) 

law was used as a basic control algorithm. A me- 
thod of varying the reference model of the TDC 

with respect to the degree of change in the target 

throttle angle was proposed in this study. To 

apply TDC to a real system, Kwon et a1.(2002) 

designed a Time Delay Controller to guarantee 

stability. In a previous study the sufficient stabili- 

ty condition of the TDC was described for general 

plants. A new sufficient stability condition for 

TDC of general plants with finite time-delay is 

proposed. 

Hong and Wu (1994) derive sufficient condi- 

tions for the zeros of the polynomial to be either 

inside the unit disk in the complex plane or at 

least one zero not inside the unit disk by exami- 

ning the coefficients of a given polynomial in the 

linear discrete system. Kang and Park (1999) 

experimentally confirm the fundamental dynamic 

properties of an electrodynamic structure. The 

discretization effects are examined for the con- 

version of continuous properties such as mass, 

stiffness, and surface charge into discrete quan- 

tities. In the systems considered, the linearized 

characteristics are well-matched with the non- 

linear systems in the sense that the linearized 

effects predominate over the high-order nonlinear 

terms. 

In the field of a discretization, conventional 

numerical techniques such as the Euler and 

Runge-Kutta method have been used for ob- 

taining the sampled-data representation for the 

original continuous-time system (Franklin et al., 

1998), which does not have delay. All of these 

approaches require a small time step in order 

to be deemed accurate, and this may not be the 

case in control applications where slow sampling 

and large sampling periods are inevitably intro- 

duced due to physical and technical limitations 

(Kazantzis and Kravaris, 1997; 1999; Vaccaro, 

1995). Another interesting result for the dis- 

cretization of the delay-free nonlinear system can 

be found in the Carleman linearization method 

(Svoronos et al., 1994). However, this method is 

useful only for the low-dimensional system since 

its dimensionality increases rapidly with the con- 

tinuous model's dimension and the degree of the 

desired accuracy. 

In general, most, if not all, industrial control- 

lers are currently implemented digitally. In the 

design of model-based digital controllers, for 

systems of both process and non-process type, 

two general approaches are available. First, a 

continuous time controller is designed based on a 

continuous time system model, followed by a 

digital redesign of the controller in the discrete- 
time domain in order to approximate the per- 

formance of the original continuous-time con- 

troller. Second, a direct digital design approach 
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can be followed based on a discrete-time model 

(sampled-data representation) of the system, in 

which the controller is directly designed in the 

discrete-time domain. It is apparent that this al- 

ternative approach is more attractive when deal- 

ing directly with the issue of sampling. Indeed, the 

effect of sampling on the system-theoretic prop- 

erties of the continuous-time system is very im- 

portant because these properties are associated 

with the attainment of the design objectives. It 

should be emphasized that in both design ap- 

proaches, time discretization of either the con- 

troller or the system model is necessary. Further- 

more, notice that in the controller design for 

time-delay systems, the first approach is trouble- 

some due to the infinite-dimensional nature of 

the underlying system dynamics. As a result, the 

second approach becomes more desirable and 

will be pursued in the present study. 

This paper expands the well-known time- 

discretization of the linear time-delay system 

(Franklin et al., 1998; Vaccaro, 1995) to non- 

linear control systems with delayed multi-input. 

The proposed discretization scheme applies the 

Taylor series expansion according to the mathe- 

matical structure developed for the delay-free 

nonlinear system (Kazantzis and Kravaris, 1997 ; 

1999) and delayed single-input nonlinear system 
(Kazantzis et al., 2003). 

2. Nonlinear System 
with Time-Delay Single-Input 

Single-input nonlinear continuous-time con- 

trol systems can be expressed with the following 

state-space representation : 

dx(t) 
dt = f ( x ( t ) ) + g ( x ( t ) ) u ( t - D )  (1) 

where x ~ X C R  n is the vector of states and X is 
an open and connected set, u ~ R  is the input 

variable and D is a constant time-delay. It is 

assumed that f (x), g (x) are real analytic vector 
fields on X.  

An equidistant grid on the time axis with mesh 

T=th+:--tk>O is considered, where Ilk, / k + : ) :  
[leT, (k+ 1) T) is the sampling interval and T i s  

the sampling period. It is assumed that system 

Eq. (1) is driven by an input that is piecewise 

constant over the sampling interval, i.e. the zero- 

order hold (ZOH) assumption holds true: 

u(t) =u(kT)  -~u(k) =constant (2) 

for k T < - t < k T +  T. Furthermore, let : 

D=qT+~, (3) 

where q E { 0 ,  1, 2, "-'} and O<7"<T. Equi- 

valently, the time-delay D is customarily re- 

presented as an integer multiple of the sampling 

period plus a fractional part of T (Franklin et 

al., 1998; Vaccaro, 1995), Under the ZOH as- 

sumption and using the above notation, it is 

rather straightforward to verify that the delayed 

input variable attains the following two distinct 

values within the sampling interval (Vaccaro, 

1995) : 

u(t_D)=lu(kT-qT-T)-u(k-q-l) ifkT<-T<kT+7 (4) 
u(kT-qT)=-u(k-q) ifkT+7<-t<kT+ T 

Under the above preliminaries, the mathematical 

expression of the time-discretization of a single- 

input nonlinear system with t ime-delay will be 
presented. 

Initially, delay-free ( D = 0 )  nonlinear control 

systems are considered with a state space repre- 

sentation of the form : 

dx(t) 
- f ( x ( t ) ) + g ( x ( t ) ) u ( t )  (5) 

dt 

Under the ZOH assumption and within the 

sampling interval, the solution of Eq. (5) is 

expanded in a uniformly convergent Taylor series 

(Vidyasagar, 1978) and the resulting coefficients 

can be easily computed by taking successive par- 

tial derivatives of the r ight-hand-side of Eq. (5): 

Tl dlx *k 
x ( k + l ) = x ( k )  +~'~=t l! dt ~ 

T t (6) 
=x(k)  + ~AH(x(k)'I=I u(k) ) l! 

where x (k) is the value of the state vector x at 

time t = t k = k T  and A l ° ( x ,  u) are determined 
recursively by : 

Atll(x, u) = / ( x )  +ug(x) 

0.4 I~j (x, u) (7) 
At~+lJ(x, u ) -  ax (f(x) +ug(x)) 
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with l =  1, 2, 3, .... 

The sampled-data representation of the non- 

linear system with delayed single-input can be 

derived from Eq. (6) resulting in Eq. (8) (Kazan- 

tzis et al., 2003). 

x(kT+r) :x(kT)+XA'(x(kr): , - q -  

ifkT<t<kT+7 
(T_r)~ (8) 

x(kT + T) =x(kT +r) + ~A'(x(kT + ~'), u(k-q) ) 

if kT+7~t<kT+ T 

where x(k)  and A ttl (x, u) are the same as in the 

above delay-flee case. 

As a result, the time-discretization of a non- 

linear control system with delayed input is com- 

puted by 

x(k+l) =x(k)+~AZ(x(k),, u(~-q-l))~. T 

" " u(k-q-1))~.), u(k-q))(T-r)' +~At(('(k)+~ A'(x(k)' f (9) 
: o I! 

sampling period, the inputs are as follows : 

if kT <t<kT +Ti 
ua(k T-qlT- T)-  ul(k-ql-1) 

u,(t-D~) =' 
if kT+71~t<kT+ T 

u~(k T-q~T)- u~(k-q~) 
(12) 

( if kT <t<kT +~z 
, I u2(kT-(qi+n) T)-T)=uz(k-(ql+n)-l) 

u21t - O2) ) 
/ if kT+z2<-t<kT+ T 
L uz(kT-(a~+n) T)=--u2(k-(ql+~)) 

It is necessary to specify how the sampled-data 

representation is affected when the multi-inputs 

with delay are applied to the system. Delays 

within one sampling period, as well as delays that 

are larger than one sampling period, will be 

considered in the following section. This is a 

necessary procedure that derives a general equa- 

tion of time-discretization for nonlinear system 

with time-delay. 

3. N o n l i n e a r  S y s t e m  

w i t h  T i m e - D e l a y  M u l t i - I n p u t  

As shown in (Kazantzis et al., 2003), the time- 

discretization of a nonlinear system with single- 

input time-delay can be obtained using the Tay- 

lor series, similarly the expansion of the single 

input system to multi- input system is possible. 

Input delays that are either within one sampling 

period or larger than one sampling period will be 

considered in this section. 
For  simplicity, a system with two inputs will be 

considered in this section. A two-input nonlinear 

continuous-time control system can be expressed 

in the following state-space form : 

d x ( t )  
dt - f ( x ( t ) ) + u , ( t - D 1 ) g , ( x ( t ) )  (10) 

+ u z ( t - D 2 )  g2(x(t) ) 

The delays of the inputs are described in Eq. 
( l l ) ,  which is derived from Eq. (3), 

ul ( t -D1)  - ~ (DI=q~ T + T1) 
( l l )  

u2 ( t - Dz) - --~ ( Dz= q2 T + zz) 

If  the difference of the delays is less than one 

3.1 The case when difference of delay is less 
than one sampling period 

In this section, the difference of input delays 

are less than one sampling period is considered. 

The delayed inputs are depicted in Fig. I. The 

horizontal axis indicates time and ui (k - -D)  
refers to the input of system. In the interval 

between k and k + l ,  ul is u l ( k - q l - 1 )  before 

time reaches k+Yl  and ul(k--ql)  after k + T v  In 

a similar manner, u2 will be u 2 ( k - q 2 - 1 )  before 

time reaches k+Yz and uz(k-q2)  after k+zz .  

Thus, the input values are decided depending on 
the time. Since the difference in the input delays 

is less than one sampling period, all of the inputs 

uz(k-q2 - I )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  > ...................... ...... u~(k -qz )  

I 1 
k k+YI k+y2 k + l  

(r, <z~ ) 
Fig. 1 Input signal for each time interval in one 

sampling period 
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are located in the same sampling period. It should 

be noted that two cases exist in the input delays 

such that 7x<_72, 7z<7~. The values of q~ and 

qz are zeros since the delays are less than one 

sampling period. There are three time intervals 

in one sampling period such that k T < t <  
kT+7~,  k T + y t < - t < k T + y z ,  and k T + 7 2 <  
t < k T + T .  

The inputs and the corresponding state values 

can be obtained as follows. 

1) Case 1, ~ l ~ t 2  
If time t is in k T < - t < k T + ) ' l  as shown in 

Fig. 1, the inputs and state values can be written 

as follows : 

u~(t-D~) =ua(k-qj-l), uz(t-D2)=uz(k-q2-1) 

x(kT + ~1) :x(kT) (13) 

+ ~AI'l(x(kT),= ut(k-qt-l), uz (k -qz- I))~ 

The input values in the interval k T  < t < k T + 71 

are determined by the input produced by one 

sampling period ahead. 

In the second interval k T + y ~ t < k T + 7 2 ,  
the input  and the state values are 

u~(t-D~)=u~(k-qa), uz(t-D2)=u2(k-q2-1) 

x(kT + ~z) =x(kT + r~) (14) 
(~-~)~ 

+ Y, AItI(x(kT + r~), u,(k-qL u2(k-q2-1) ) f! t=l 

In the third interval when time t is in k T + 7 2 ~  
t < k T +  T,  the input and the state values are as 

follows : 

ut(t-Da) =ut(k-ql), Uz(t-Oz)=u2(k-q2) 

x(kT + T) =x(kT +r2) 
(T_r2)~ (15) 

+ ~At'l(x(kT +Tz), ut(k-ql), uz(k-q2) ) 
l-~. 

2) Case 2, 72< 71 
In this case, the delay of u2 is larger than the 

delay of ul, thus the locations of 71 and 7z are 

reversed. The input and the state values are 

obtained in a similar way to that in the case 1. In 

the first interval, k T ~ t < k T + y 2 ,  the inputs 

and the state values can be written as follows : 

uz(t-D2) =u2(k-q2-1), u~(t-D~)=u,(k-q~-l) 

x(k T + ~z) =x( k T) 

+~.A ttl (x(kT), u2(k-qz-1), ul(k-ql-1)) (Tz) l 
l=l l! 

(16) 

Similarly, for the second interval kT+~'z<--t< 
k T+Tt ,  the input and the state values are as 

follows : 

uz(t-De)=uz(k-q2), u,(t-l~)=ux(k-qx-1) 

x(kT +rl) =x(kT +'/2) ,(17) 
° (~,-72) 

+ ~AH(x(kT + u2(k-q2), ut(k-q~-l)) 1 ~  

For  the third interval, k T + )'a-< t < k T + T ,  the 

input and the state values are as follows : 

u2(t-O2) =u2(k-q2), •l(t-Ol)=ul(k-ql) 

x(kT + T)=x(kT + ),~) 
(T-rl) t +~'A[*l(x(kT+rL,=l u,(k q2), Ul(k ql)) [T~- 

(18) 

The number  of intervals in one sampling period 

is related to the number  of inputs. If  there is one 

input, then there are two intervals in one sam- 

piing period, and for two inputs three intervals 

should be considered. 

3.2 The case when difference of  delay is 

between one and two sampling periods 

This section discusses a difference of input  

delays greater than one sampling period and less 

than two sampling periods, using a similar ap- 

proach to that taken in the previous section. Since 

the difference in input delay is greater than one 

sampling period, two sampling periods are consi- 

dered to obtain the inputs and the state values. 

Thus, six intervals are considered since there are 

two inputs and two sampling periods as shown 

in Fig. 2, This figure depicts the inputs of the 

system in a fashion similar to Fig. 1. The hori- 

zontal axis indicates time and ui (k- -D)  refers to 

the input of a system. In the interval between k 

and k + 2 ,  ux is ul(k--ql--1)  when time is in 

between k and k+y1, u l ( k - q l )  when time is in 

between k+71 and k + l + ? q  and u l ( k - q l + l )  
when time is after k +  1+ Y1. The input values of 

uz will be decided similarly as in ul. 
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l,:(~-q, - 2~ + ...... .~(~-q -l) Jl" ~'(;~ "q') " 
I I 

! 

k k+y~ k+y~ k+[  k+l+y~ k+l+Tq k+2 

Fig. 2 Input signal for each time interval in two 
sampling periods 

All of the inputs and the state values are as 

follows : 

If k T < - t < k T + 7 ~ ,  (qz=q~+l ) ,  

then 

u,=u:(k-q,-l), u2=uz(k-q,-2), 

x(k T + ~t) =x(k T) (19) 

If k T +  7"i< t<  k T +  ~'z, 
then 

u:=ua(k-q~), m=uz(k-q~-2), 

x(k T + Tz) =x(k T + 7a) 

+ ~AH(x(kT +rL u:(k-q,), u z ( k - q : - 2 ) ) - -  
/=1 

(72-- ~'I) I 

l: 

(20) 

If k T +  y z < t < k T +  T,  
then 

ul=ui(k-q~), ua=uz(k-qa-I) 

x(kT + T)=x(kT +'/2) 

+ ~AI~l(x(kT + ~z), Ul(k-ql), uz(k-ql-l) ) - -  
I=1 

(T-Tz) t 

I! 

(21) 

If k T +  T < _ t < k T +  T +  y~, 
then 

ul=ul(k-qx), u2=uz(k-ql-l) 

x (kT+ T+'/I) =x (kT+ T) 
(~1)' + ~AI'I(x(kT + T), u,(k-~), re(k-q,-1)) 

(22) 

If k T +  T + 7 l < t < k T +  T+Tz ,  
then 

u~=ualk-q~ + l), uz=u2(k-q~-I) 

x(kT + T+ ~2) =x(kT + T+ ~) 

+ ~.At~l(x(kT + Z + ~), uafk-q~+ l), u2(k-q~-l) ) - -  
l=l 

(~2- ~1) ~ 
t! 

(23) 

If k T +  T + 7 2 < t < k T + 2 T ,  
then 

u,:u~(~-q~+l), u2=u2(k-q,) 
x (kT+2 T) =x (kT+ T+ 72) 

+ ~AH(x(kT + T +~2), u,(k-q~+l), u2(k-q,) ) - -  
I=1 

(T-r~) ~ 
I! 

(24) 

3.3 The case  when di f ference  of  delay is 
greater  than two sampling periods 

A difference of input delays greater than two 

sampling periods will be considered in this sec- 

tion. In this case, nine intervals are considered 

since there are two inputs in the system and the 

difference in the input delays is two sampling 

periods. Figure 3 shows a diagram of the input 

signal for each time interval in three sampling 

periods. The input and state values are obtained 

in a similar way to that used in Sec. 3.1 and Sec. 

3.2. Also, it is assumed that it is a fixed integer. 

All of the inputs and state values are as follows. 

If k T < t < k T + y 1 ,  (q2=q l+2) ,  

then 

u:=m(k-q~- l), u2=u2(k-q:-3) 

x(kT +7~) =x(kT) (25) 

+ ~At*J(x(kT), u,(k-ql-l), uz(k-q~-3)) (r~)~ 
~°, l! 

If k T + ~ ' : < t < k T + 7 2 ,  
then 

u~=u~(k-q~), u2=uz(k-q~-3) 

x(kT + ~z) =x(kZ +~:) (26) 

(72-~Y 
+ ~AE'J(x(k T + ~I), u,(k-q~), re(k-q,-3)) 

If k T + T z < _ t < k T +  T,  
then 

m-m(k-oL m-re(k-q,-2) 

x(k T ~- T) =x(k T--Tz) (27) 
° (T-~2) '  

+EAH(x(kT+rLz=~ m(k-qLu2(k-q~-2)) I! 

If k T +  T < t < k T +  T+71,  
then 

Ul=Ul(k-ql), u2=m(k-ql-2) 

x(kT + T +7,) =x(kT + T) (28) 

+ ~AH(x(kT + T), re(k-q,), m(k-ql-2) ) (7~)' 
I=l 
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u,(~-q, 3) ,,~ q 2) u,(~-q~-I) 4 u;(k-q) 

Fig. 3 Input signal for each time interval in three 
sampling periods 

n 
dx(t) =f(x(t) ) + ~gdx(t) )udt) 

dt = 
=f (x(t) ) + u,(t) gdx(t) ) +udt) gdx( t) ) +... (34) 

+u.(t)g.(x(t)) 

The values o f A  t*l (x, u) are evaluated recursively 

as follows : 

If k T +  T + 7 1 < - t < k T +  T+)'2, 
then 

~l=Ul(k-q1"-]}. u2= u2{k-ql-!) 

x(kr+ r+n) (29) 
(~'2-)'1) / 

4~=lA[~(x(~ZJffZ4~/i), Ul(k--qlq-[), ~,[k--ql--2)) 
= I! 

If k T +  T + ? ' z £ t < k T + 2 T ,  
then 

Ul--Ul(k-ql+l), uz=u=(k-qt-1) 

x(kT + ZT) =x(kT + T + 7~) ~ ( 30) 
(T-r,) + ~A"I(xlkT + T +rL ul(k-q~+l), u~(k-qt-II 

If k T + 2 T < t < k T + 2 T + 7 1 ,  
then 

ul=Ul(k-qlq-I), u2=u2(k-ql-1) 

x(kT+2T+7ti=x(kT+2T) (31) 
' l 

If k T + 2 T + ) q < t < k T + 2 T + T z ,  
then 

ul=ut(k-qt + 2), u2-u2(k-ql-I) 

x(hT +2T +rz)=x(kT +2T +r:) (32) 
H i)) (~z-?I l 

If k T + 2 T + 7 2 < t < k T + 3 T ,  
then 

up u~ (k-q~ + 2), u2=uz(k-qi) 

x(kT+3T =x kT+2T+h) (33) 
(T-rd 

+ Y.A"J(xlkT + 2T +~L ut(k-q~+ 2). u~(k-qa)) -- 
I=l 

4. Time-Diseretization of General 
Nonlinear Systems with Time-Delay 

The general delay-flee multi-input nonlinear 

system in state space form can be written as 
follows : 

A"~Ix, u/H(x)+u,(tigdxl +udt)~(x)+...+u,(tigdx) 

AE2~(x, u)=d(x)~+udt)gdx)~+u2(t)gdx)~+-.+u~(t)gdx)J: 
~a t~l(x, u) . 

- Ox x (3s) 

At,, j BAH(x, u) (/ (x) +u,(t) g(x) +u2(x) ~(x) +"'+u,(t) g,(x) ) 
= Ox 

The recursive values of Eq. (35) are obtained 

using the same method as that described in Eq. 

(7) except the inputs are multiple. From Sec. 3.1, 

3.2 and 3.3, the discrete equation can be derived 

for a nonlinear system having two inputs with 

time-delay. The results show that Equations (13), 

(19) and (25) are identical and also the Eqs. (22) 

and (28) can be derived from Eq. (13) simply by 

replacing k by k +  1 because of their location 

in the second sampling period. Furthermore Eq. 

(31) can be derived from Eq. (13) by replacing k 
by k + 2  since it is located in the third sampling 

period. Similarly, Eqs. (14), (20) and (26) are 

identical since the corresponding inputs are in the 

first sampling period. Equations (14), (23) and 

(29) are identical since Eqs. (23) and (29) can be 

derived from Eq. (14) by replacing k by k + l  

since the inputs are located in the second sam- 

pling period and similarly Eq. (32) can be com- 

puted from Eq, (14) by replacing k by k + 2  since 

it is located in the third sampling period. Also, 

the Eqs, (15), (21) and (27) are identical and 

Eqs. (24) and (30) can be obtained from Eq. 

(15) by replacing k by k + l  since the inputs are 

in the second interval. Finally Eq. (33) can be 
obtained from Eq. (15) by replacing k by k-F2 

since it is in the third interval. As a result, the 

inputs and state values can be expressed using the 

same method no matter where the input is located. 

In the 2-input case, the equations can be ob- 

tained as follows depending on the interval of 
time t as shown in Fig. 4. 
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ui(k-(ql+n)-D u~(k-(ql+n)) u~(k-ql- I) [ uz(k-ql ) 

. . . . . . . . . . . . . . .  T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  T 

k 

Fig. 4 

k÷n k*n+}'t k+n+y: k+n*l 

Input signal for each time interval in case of 
two inputs with arbitrary delay 

If k T + 7 , ~ t < k T +  T ,  
then 

x(kT + T) 
(41) 

:x{kT +r,) + ~Al*l(x(kT +r,), u,(k-qL .... u,.~(k-q,_~), u,(k-q,)) 
l:~ l! 

5. Simulation 

If k T < t < k T + ~ , l ,  
then 

Ul=U,(k-q,-l), u2=u2(k-(q,+n)-1) 

x(kT +71) =x(kT) 
(7~) z (36) 

+ ~AE~J(x(kT), u~(k-q,-I), u2(k-(q~+n)-l) ) I! 

If k T + 7 1 < t < k T + ~ ' 2 ,  
then 

Ul= ~l(k-ql), u2=u2(k-(ql+~)-]) 

x(kT +72)=x(kT + ~l) (37) 
(72-~1)' + ~Af~t(x(kT +~), u~(k-q~), u2(k-(q,+n)-l)) 

1°1 I] 

If k T + ~ . ~ < _ t < k T +  T,  
then 

Ul=U~(k-q,), u2=u2(k-(q,+n)) 

x(kT + T) =x (kT + 72) 
+ ~AE"(x(kT +72), ul(k-q~), u2(k-(q~+n))) (Tllf 2)138) 

where k--0, 1, 2, 3, ." and qz=q~+n.  
From the above results, the general time-dis- 

cretization equation of a nonlinear system with 

delayed multi-input can be derived as follows : 

If k T < - t < k T + 7 1 ,  
then 

x(kT+~,) 
(~,)' (39) 

=x(kT)+P, At~l(x(kT), Ul(k--ql--]), "', u.(k--qtl--l)) 

If k T + Y i < - t < k T + y i + l ,  
then 

. . . . . .  ~ , ~ /x(kT +7,), Ul(k-ql), '", ui(k-ql) ,  1 (Ti+l- ~[i) t (40) 
=X[g l  ~-Ti) T I ,~  - -  

,=1 t u,+~(k-q~,-l),"., u,(k-q,-l) ] I] 

where l ~ i < _ n - - I  

Two examples are considered in the computer 

simulation to prove the feasibility of the propos- 

ed discretization scheme for the delayed multi- 

input nonlinear system. The examples are a sim- 

plified model of maneuvering an automobile 

(Henk Nijmeijer and Arjan van der Schaft, 1990) 

and a two-degree of freedom mechanical system. 

In order to validate the proposed discretization 

scheme, exact solutions for these systems are also 

required. In this paper the continuous Matlab 

ODE solver is used to obtain as an exact solution. 

In the simulation the discrete values obtained 

using the Taylor series expansion scheme are 

compared with those obtained through the con- 

tinuous Matlab ODE solver for the corresponding 

sampling period. 

5.1 Simple second order system 

The front axis of a simplified automobile 

maneuvering system is depicted in Fig. 5. The 

middle of the axis linking the front wheels has 

position (xl, x2) ~ R  2, while the rotation of this 

axis is given by the angle xa. The states xl, x2 

related with rolling are directly controlled by 

the input ul while the state x3 related with rota- 

tion is directly controlled by u2, thus the gover- 

ning nonlinear differential equation can be ex- 

pressed as follows: 

Fig. 5 

×~ 

1 

t 

I 

I 
1 
X~ 

Schematic diagram for front axis of autom- 
obile 
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 -ix i=icosx |ul(t-D,) Jr (42) 
Lxd L o j 

Table 1 Time responses of the simplified autom- 

obile in the first case 

Time step 

200 

Three  different sets of  inputs  will  be appl ied to 400 

the system. The  first input  set conta ins  the delayed 600 

inputs  ul  and u2 which  are in the  same sampl ing  
800 

period.  The  o ther  sets are made  up of  inputs  tha t  
1000 

are not  in  the same sampl ing  interval.  The  second 

set conta ins  inputs  whose  difference in delays is 1200 

one sampl ing  period,  and  the th i rd  set conta ins  1400 

inputs  whose  difference in delay is two sampl ing  1600 

periods.  All  of  the inputs  are assumed to be step 1800 

funct ions  whose magni tudes  are u l = l  and  uz = 2000 

2.5. The  s imula t ion  results of the three cases are 

shown  in Tab le  1, Table  2 and  Tab le  3, respec- 

tively. The  ini t ia l  cond i t ions  are assumed to be 

xl (0) = 0 ,  x2(0) = 0 ,  x3(0) = 3 0  ° and  the sampl ing  

per iod ( T )  is 0.001 sec. T he  delays of  the first 

case are 0.0005 sec for ul and 0.0008 sec for u2, 200 

thus 71 is 0.0005 sec and  7z is 0.0008 sec. In this 400 

case, the input  ul and u2 are located in the same 600 
sampl ing  period.  The  numer ica l  differences be- 

800 
tween the Mat lab  solver and  the proposed  method  

for state xl range  from --0.8 × 10 -s to 0.7 × 10 -5, 1000 

whi le  differences for state x2 range from --0.7 × 1200 

10 -5 to 0.6 X 10 -S as s h o w n  in Tab le  1. To  facili- 1400 

tate the in te rpre ta t ion  of  the results, the difference 1600 

between the Tay lo r  and  the  M a t l a b  results are 1800 

depicted in Fig. 6. In the second case, the input  2000 

delays were D~=0.0005 sec and / )2=0 .0018  sec. 

The  difference between the delay of ul  and  u2 is 

abou t  one  sampl ing  period.  The  numer ica l  differ- 

ences between the Ma t l ab  solver and  the proposed  

method  for state xl range from - -2  X 10 -4 to 0.6 X 

10 -4 and those for state x2 range  from - -2  × 10 -4 

to 0 as shown  in Tab le  2. The  differences in the 

responses the Tay lo r  method  and the Mat lab  

solver are shown  in Fig. 7. Tab le  3 shows the 

s imula t ion  results for delay of  D1=0.0005  sec and 

Dz=0 .0028  sec and  the error  be tween the Tay lor  

series and  the M a t l a b  solver are depicted in 

Fig. 8. The  difference of  each delay is abou t  two 

sampl ing  periods.  The  numer ica l  differences be- 

tween the  Ma t l ab  solver and the proposed  method  

for state xl lie in the range from --0.6 × 10 -4 to Fig. 6 

1 .6×10  -4 and  0 . 0 7 × 1 0  -4 to 2 × 1 0  -4 for state x2. 

Matlab (xl) Taylor (xt) Matlab (x2) Taylor (x~) 

0.1377 0.1377 0.1414 0.1414 

0.3268 0.3268 0.1997 0.1997 

0.5208 0.5208 0.1603 0.1602 

0.6721 0.6721 0.0326 0.0326 

0.7436 0.7436 -0.1518 -0.1518 

0.7180 0.7180 -0.3481 -0.3481 

0.6014 0.6014 -0.5080 -0.5080 

0.4224 0.4224 -0.5924 -0.5924 

0.2248 0.2248 -0.5807 -0.5807 

0.0570 0.0570 -0.4757 -0.4757 

Table 2 Time responses of the simplified autom- 
obile in the second case 

Time step Matlab (xl) Taylor (xx) Matlab (x2) Taylor (x2) 

0.1374 0.1374 0.1417 0.1417 

0.3264 0.3263 0.2004 0.2005 

0.5204 0.5204 0.1614 0.1615 

0.6720 0.6720 0.0341 0.0343 

0.7440 0.7440 -0.1502 --0.1499 

0.7187 0.7188 - -0 .3465 -0.3463 

0.6025 0.6026 -0.5067 -0.5065 

0.4236 0.4238 - -0 .5915 --0.5914 

0.2260 0.2262 -0.5802 -0.5802 

0.0580 0.0582 -0.4756 -0.4756 

x10 ~ 

t r.1- - 

tl[~c] 

1110 4 

State error response of the simplified autom- 

obile for the first case 
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Table 3 Time responses of the simplified autom- 
obile in the third case 

Time step Matlab (xl) Taylor (xi) Matlab (x2) Taylor (x2) 

200 0.1370 0.1370 0.1421 0.1421 

400 0.3258 0.3258 0.2014 0.2014 

600 0.5199 0.5200 0.1630 0.1628 

800 0.6719 0.6719 0.0362 0.0360 

1000 0.7444 0.7444 -0.1479 -0.1481 

1200 0.7198 0.7179 -0.3443 -0.3445 

1400 0.6040 0.6039 -0.5048 -0.5050 

1600 0.4255 0.4253 -0.5902 -0.5903 

1800 0.2279 0.2277 -0.5795 -0.5796 

2000 0.0595 0.0594 -0.4754 -0.4754 

E C x l i  

I . . . .  ! 

t [i;t¢1 

x 1o ~ . , - ,  , 

. 3  I 

0 012 014 ~!E; 0,8 1 1.2 1 4 16 18  2 

Fig. 7 State error response of the simplified autom- 

obile for the second case 

5.2 Two Degree-of-Freedom Mechanical 
System 

In this section, a complex two degree-of-free-  

dom mechanical  system is examined. The system 

consists of  a slider, spring, damping components,  

and a pendulum as shown in Fig. 9. The pendu- 

lum is hinged to a block mounted on a slider. 

The slider is free to move along the guides. The 

motion of  the slider is damped by springs, while 

the rotat ional  resistance in the hinge damps the 

pendulum. The governing nonlinear differential 

equations are obtained using Newton 's  method as 

follows : 

( m l + m z ) 2 + m l l ( C o s  0+lz  sin 0) 0 
+ ml l  (it cos 0 - s i n  0) 02nt-,u (ml-t - mz) g 
+ 2 k  ( x -  lo) -- ul ( t--D1) 

roll cos O~ + ( Ic + roll z) O+ mlg l  s in  0 

= -  MoO + u2( t -  D2) 

(43) 

where all of  the parameters are shown in Table 4. 

The input force ul is applied to the slider and u2 

is applied to the pendulum. Equat ion (43) can be 

expressed in the state space form using the fol- 

lowing states. 

x , = x ,  x2=x,  x3= O, x4 = 
(44) 

~i =xz, ~3=x4 

The state space equation is as follows : 

f B  ~ x ~ ,  

1 1  . . . . . . . . . . . . . . .  L . . . . . . . .  2 -  . _ _ ~  . . . . . .  ~ . . . . . .  a . . . . . . . .  J . . . . . . . . . . . .  L . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . .  J . . . . . . . . . . . . . . . .  

" 0 0,2 0,4 0,6 0.~ 1 12  14 ~6 1,8 2 
J I t ,  e e l  

" , . . . . . .  2 0 02 04 06  O~ 1 
t I ~ ]  

Fig. 8 State error response of the simplified autom- 

obile for the third case 

TY X 

Fig. 9 

77 77,7 -7777 
()  

Schematic diagram of the 2-DOF mechanical 

system 
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0 m:+m~ OmlI(cos(x3)+psin(x3)) it2 
0 0 1 0 x3 

0 md cos(xs) 0 Ic+rnll 2 ~4 
(45) [ = - roll (~ cos (x3) -sin (x3)) x~ -/1( ml + m2) g - 2k/xx + u~ 

X4 

- m0x4+ u2- mlgl sin(x3) 

The  ini t ia l  condi t ions  are x ( 0 ) = 0 . 3 ,  2 ( 0 ) = 0 ,  

0(0)  = 3 0  ° , 0 ( 0 ) = 0 ,  and  A x = x - - l o .  This  sys- 

tem is s imulated with three different sets of  in- 

puts as in the previous  example.  In the first case, 

the input  u~ and u2 are located in the same 

sampl ing  interval  tha t  is the simplest  case. The 

inputs  are step funct ions  whose magni tudes  are 

ux = 5 N  and u2 = 15 o. 

It is assumed that  the inequal i ty  of  the delay 

is 7z_< 7z for every case. The  sampl ing  per iod T i s  

0.001 sec. In the first set of  delayed inputs,  the 

inputs  are wi th in  one sampl ing  period,  and the 

delays are assumed to be 7z=0.0005 sec, 72 = 

0.0008 sec, and q~=0,  q z = q a + 0 = 0 .  Therefore  

the total  delay of  Ua becomes 0.0005 sec and  u2 is 

0.0008 sec. These s imula t ion  results are shown  

in Tab le  5. The  response of the proposed method  

is a lmost  identical  to that  ob ta ined  using the 

Mat lab  solver. The  numer ica l  difference between 

the Ma t l ab  solver and  the Tay lo r  method  for 

state x: lie in the range 0.8 × 10 -~ to 0.8 X 10 -s and 

from 0.9 × 10 -4 to 1 .2× 10 -4 for state xz. Those  for 

state x3 range from 7 × 10 -5 to 2.8 × 10 -s and  from 

0.5 × I0 -a to 0.73 × 10 -s for state x4. To facili tate 

the in terpre ta t ion  of  the results, the difference 

Table 4 System parameters for the 2-DOF mec- 
hanical system 

Mass of slider m:=0.654 kg 

Mass of pendulum mz=0.7925 kg 

Spring coefficient k = 100 N / m  

Length of the rod /=052 m 

Initial length of the spring /o=0.025 m 

Acceleration of the gravity g = 9 . 8  m/s z 

Inertia about the center Ic=0.0014 kg.m z 

Coefficient of friction ,u=0.2 

Dry friction from the pendulum M0=0.2 kg-m/s  z 

between the Tay lo r  and the Ma t l ab  results are 

depicted in Fig. 10. 

Table 5 Time responses of the 2-DOF mechanical 
system for the first case 

Time step Matlab (x,) Taylor (x0 Matlab (xz) Taylor (xz) 

200 0.0457 0.0457 -0.0388 -0.0387 

400 0.0272 0.0272 -0.0151 -0.0152 

600 0.0367 0.0367 0.0294 0.0195 

800 0.0353 0.0353 -0.0060 -0.0060 

1000 0.0369 0.0369 0.0043 0.0043 

1200 0.0356 0.0356 -0.0064 -0.0065 

1400 0.0357 0.0357 0.0024 0.0024 

160~ 0.0357 0.0357 -0.0008 -0.0008 

1800 0.0358 0.0358 0.0010 0.0010 

2000 0.0358 0.0358 -0.0005 -0.0005 

Time step Matlab (Xs) Taylor (x3) Matlab (x4) Taylor (x4) 

200 0.3468 0.3468 -0.5716 -0.5717 

400 0.2445 0.2445 - -0 .8124 --0.8124 

600 0.1369 0.1369 0.0499 0.0497 

800 0.1922 0.1922 0.2080 0.2081 

1000 0.2094 0.2094 0.0576 0.0576 

1200 0.2166 0.2166 -0.0246 -0.0245 

1400 0.2058 0.2058 --0.0404 0.0404 

1600 0.2038 0.2038 0.0035 0.0035 

1800 0.2043 0.2043 0.0054 0.0054 

2000 0.2059 0.2059 0.0057 0.0057 

l x t 0 ~  2 X 1 0 '  . . . . . . .  

i * x~ ! 

t| 1.51 ~ ........... q 

-o5! : i 

0 0 5  15 2 0 0,5 1 15 2 
t (,~*c) t [see| 

4, --- -- - -  - - x  1 ¢  1 x ' JO .......................... I 

' , l f i  
I I G I I A  - -  _ i 

t [sec] ! [~ee] 

Fig. 10 State error response of the 2-DOF mec- 

hanical system for the first case 
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In the second case, the delay parameters  are 

assumed to be 7"l----0.0005 sec, 7,2=0.0008 sec, ql = 

Table 6 Time responses of the 2-DOF mechanical 
system for the second test 

Time step Matlab (xi) Taylor (xl) Matlab (xz) Taylor (X2i 

200 0.0457 0.0457 -0.0397 -0.0395 

400 0.0272 0.0272 -0.0143 -0.0145 

600 0.0367 0.0367 0.0290 0.0291 

800 0.0353 0.0353 -00058 -0.0059 

1000 0.0369 0.0369 0.0042 0.0042 

1200 0.0356 0.0356 -0.0064 -0.0064 

1400 0.0357 0.0357 0.0024 0.0024 

1600 0.0357 0.0357 -0.0008 -0.0008 

1800 0.0358 0.0358 0.0010 0.0010 

2000 0.0358 0.0358 -0.0005 -0.0005 

Time step Matlab (x~) Taylor (x3) Matlab (x4) Taylor (x4) 

200 0.3462 0.3463 -0.5689 -0.5692 

400 0.2438 0.2440 -0.8123 -0.8121 

600 0.1369 0.1369 0.0537 0.0528 

800 0.1924 0.1924 0.2067 0.2070 

1000 0.2095 0.2095 0.0575 0.0575 

1200 0.2165 0.2166 -0.0250 -0.0249 

1400 0.2058 0.2058 -0.0401 -0.0402 

1600 0.2038 0.2038 0.0035 0.0035 

1800 0.2043 0.2043 0.0054 0.0054 

2000 / 0.2059 0.2059 0.0056 0.0056 
i 

2 r i -  . . . . . .  i - I  6 I - -  , _  

!ii " <'; 
t [m¢] t [see] 

- .o,, ............... o ' i  ............ T ............. ; ~  . . . . . . . . . . . . .  

i l ' ~ ]  t [se¢l 

Fig. 11 State error response of the 2-DOF mec- 

hanical system for the second case 

0, q 2 = q l + l = l  and  the difference of  the input  

delays is greater than  one sampl ing  period.  There-  

fore, the delay of  u l  is 0.0005 sec and  the delay 

of  u2 is 0.0018 sec. The  s imula t ion  results are 

shown in Table  6. In this case, the differences 

between the Mat lab  solver and  the proposed  

method  for state xt  lie in the range  from 2.1 × 10 -5 

to 1.8 × 10 -5 and  from 2.7X 10 -4 to 3 × 10 -4 for 

state Xa. Those  for Xa range from 2.1 X 10 -4 to 0. 

6 × 10 -4 and  from 3 X 10 -3 to 1.5 × 10 -a for x4. The  

differences in the responses the Tay lor  method  

and  the Ma t l ab  solver are shown  in Fig. II .  

The  last s imula t ion  is for the case where the 

difference o f  input  delays is more than  two sam- 

pl ing periods. In this case, the input  delay para-  

meters are 71=0.0005 sec, 7,2=0.0008 sec, q l = 0 ,  

q 2 - - q , + 2 = 2 ;  thus, the total  delay of  input  Ul 

is 0.005 sec and u2 is 0.0028 sec. The  s imula t ion  

results are shown in Table  7 and the er ror  be- 

Table 7 Time responses of the 2-DOF mechanical 
system tbr the third test 

Time step Matlab (xl) Taylor (xl) Matlab (z2) Taylor (x2) 

200 0.0457 0.0456 -0.0397 -0.0397 

400 0.0272 0.0272 -0.0143 -0.0143 

600 00367 0.0367 0.0290 0.0290 

800 0.0353 0.0353 -0.0058 -0.0058 

1000 0.0369 0.0369 0.0042 0.0042 

1200 0.0356 0.0356 -0.0064 -0.0064 

1400 0.0357 0.0357 0.0024 0.0024 

1600 0.0357 0.0357 -0.0008 -0.0008 

1800 0.0358 0.0358 0.0010 0.0010 

2000 0.0358 0.0358 -0.0005 -0.0005 

Time step Matlab (xt) Taylor (xa) Matlab (x2) Taylor (x2) 

200 0.3462 0.3458 -0.5689 -0.5668 

400 0.2438 0.2434 -0.8123 -0.8119 

600 0.1369 0.1370 0.0536 0.0559 

800 0.1924 0.1925 0.2067 0.2059 

1000 0.2095 0.2095 0.0575 0.0574 

1200 0.2165 0.2165 -0.0250 -0.0252 

1400 0.2058 0.2058 -0.0401 -0.0400 

1600 0.2038 0.2038 0.0035 0.0035 

1800 0.2043 0.2043 0.0054 0.0054 

2000 0.2059 0.2059 0.0056 0.0056 
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i 

X 10 ~ x 10 3 

* x l j  
¢ ~ 

"o ...... ~ 1 1.5 2 - ~ 5 ~  . . . . .  ~g ....... 
t [see] t (fiec] 

xlO J x l f f  ~ 

0 0 5 1 15 2 0.5 1 1.5 2 
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Fig. 12 State error response of the 2-DOF mec- 
hanical system for the third case 

tween the Taylor series and the Matlab solver 

are depicted in Fig. 12. The error ranges for state 

xl are from 3.7 X 10 -5 to 4.6 X 10 -5 and from -- 1 X 

10 -3 to 0.6 X 10 -3 for state x2; error for state x3 

ranges from --1.6× 10 -4 to 5.4× 10-4; error for 

state x4 ranges from 2.7 X 10 -3 to 11.7 X 10 -s. 

As a result, it is shown that the proposed Tay- 

lor-series expansion scheme discretizes a non- 

linear system with time delayed multi-input acc- 

urately. 

6. Conclusions 

This study proposes a new approach to the 

discrete-time representation of nonlinear control 

systems with delayed multi-input. It is based 

on the ZOH assumption and the Taylor-series 

expansion. In this paper a discrete-time system is 

derived directly from the continuous-time system 

without undergoing any transformation, and the 

proposed scheme explicitly accounts for the pres- 

ence of time-delay. The resulting time discretiza- 

tion provides a finite-dimensional representation 

of nonlinear control systems with delayed multi- 

input, allowing for the possible application of 

existing nonlinear controller design techniques. 

The proposed discretization algorithm are tested 

using some case studies with increasing complex- 

ity, demonstrating their satisfactory convergence 

characteristics. The extension to nonlinear system 

with time-varying delay and to systems with state 

a n d / o r  output delay is feasible and it will be the 

subject of future research. 
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